A meshless Galerkin method with moving least square approximations for infinite elastic solids∗
نویسندگان
چکیده
Combining moving least square approximations and boundary integral equations, a meshless Galerkin method, which is the Galerkin boundary node method (GBNM), for twoand three-dimensional infinite elastic solid mechanics problems with traction boundary conditions is discussed. In this numerical method, the resulting formulation inherits the symmetry and positive definiteness of variational problems, and boundary conditions can be applied directly and easily. A rigorous error analysis and convergence study for both displacement and stress is presented in Sobolev spaces. The capability of this method is illustrated and assessed by some numerical examples.
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملOptimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)
A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...
متن کاملA Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics
A Meshless Local Petrov-Galerkin (MLPG) method has been developed for solving 3D elastodynamic problems. It is derived from the local weak form of the equilibrium equations by using the general MLPG concept. By incorporating the moving least squares (MLS) approximations for trial and test functions, the local weak form is discretized, and is integrated over the local sub-domain for the transien...
متن کاملA Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids
(2001) A Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants and local weak forms. In this paper, a MLPG formulation is proposed for free and forced vibration analyses....
متن کامل